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Abstract

This paper presents a new variation of particle swarm
optimization (PSO) algorithm called generalized particle
swarm optimizer (GPSO). It extends the basic learning
strategy of traditional PSO and exerts the swarms to sig-
nificantly improve the group learning performance. In this
scheme, a particle of PSO in each dimension does not only
follow its own local optima, but also follows other supe-
rior particles’ local optima with creditability. Based on our
experimental verifications, the results suggest that GPSO
delivers superior performance for multimodal functions op-
timization compared with the state-of-art PSO methods.

1. Introduction

Easy and simple problems can be well solved by tra-
ditional optimization methods using gradient information.
For solving complex or non-derivative optimization prob-
lems, evolutionary computation techniques have been used
considerably and further improved resulting in a set of mod-
ern heuristics tools like simulated annealing (SA), genetic
algorithm (GA), ant colony optimization (ACO) and parti-
cle swarm optimization (PSO) over the past several years.
These computational intelligence methods have demon-
strated better characteristics in dealing with complex prob-
lems than conventional optimization techniques. PSO as
a representative of these evolutionary algorithms has some
appealing features including less parameters tuning and fast
convergence rate. It also performs well in a wide variety of
applications such as neural network learning, pattern recog-
nition, and data mining, etc. [2].

Despite the appealing optimization characteristics of-
fered by PSO, it is notorious of being easily trapped in local
minima like other evolutionary computation techniques and

results in the possibility of non-stability after continuously
independent runs. In order to overcome these shortcomings,
many researchers have presented various versions of mod-
ified PSOs. Veeramachaneni and Peram et al. presented a
fitness-distance-ratio-based PSO algorithm with near neigh-
bor interactions by using the ratio of the relative fitness and
the distance of other particles [3]. Parsopoulos and Vra-
hatis [4] proposed a unified particle swarm optimizer that
harnesses the local and global variant of PSO without im-
posing additional requirements in terms of function evalua-
tions. Mendes and Kennedy et al [5] used all the neighbors
of the particle instead of locally best and globally best po-
sitions to update the velocity. At the point of dimension
learning, a cooperative approach to PSO is achieved by us-
ing multiple swarms to optimize different components of
the solution vector cooperatively [6]. Likewise Liang et al.
[7] presented a comprehensive learning particle swarm op-
timizer using a novel learning strategy. Moreover, by em-
ploying other searching techniques combined into PSO, hy-
brid improved PSOs are also investigated by researchers [8].
It is worth noting that combining other searching techniques
into PSO may have improved the performance but it usu-
ally results in complicating the requirements of empirical
parameters.

In this paper, we extend the basic model of PSO and
present a generalized particle swarm optimizer (GPSO)
with social behavior concept. To strength exploitation in
evolutionary process, updating of particles in our proposed
GPSO is based on tracking other local optima together with
its own local optimum with credit coefficients. To balance
exploration and exploitation, credit coefficients are varied
dynamically. Intensive simulations were conducted and our
proposed algorithm is compared with other six different
PSOs under classical benchmark problems. GPSO delivers
better performance than other PSOs over the experiments in
terms of convergence and stability.
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2 Standard PSO

A particle in the searching space is characterized by two
factors: position and velocity. The position and the ve-
locity of the ith particle in the d-dimensional search space
can be represented as Xi = (xi,1, xi,2, . . . , xi,d) and Vi =
(vi,1, vi,2, . . . , vi,d), respectively. The ith particle has its
own best position Pi = (pi,1, pi,2, . . . , pi,d) , correspond-
ing to the individual best objective value obtained so far at
time t. The global best particle is denoted as g, which rep-
resents the best position found so far at time t, in the whole
swarm. The new velocity of each particle is given by [1]:

vi,j(t+1) = wvi,j(t)+c1r1[pi,j −xi,j(t)]+c2r2[gj −xi,j(t)] (1)

where c1 and c2 are constants named acceleration coeffi-
cients, usually c1 = c2 = 1.49; r1 and r2 are two inde-
pendent random numbers uniformly distributed in the range
[0, 1]. w is the inertia weight. Empirical studies show that
the convergence performance can be greatly improved if w
in the range [0.4, 0.9] declines linearly along with the ex-
ploration proceeding. The updating equation is given by

w(t) = wmax − t × (wmax − wmin)
nmax

(2)

where wmax and wmin are the maximum and minimum in-
ertia weights, respectively, t is the current iteration number,
and nmax is the maximum number of iteration. The position
of each particle is then updated in iteration according to the
following equation

xi,j(t + 1) = xi,j(t) + vi,j(t + 1) (3)

Generally the value of each component in Vi can be
clamped into the range [vmin, vmax] in order to control the
excessive roaming of particles outside the searching space.
The search process repeats until the maximum number of
iterations is reached or the stopping criterion is satisfied.

3 GPSO

3.1 Motivation

Social behavior may be considered to be a complex net-
work, in which the relationships among individuals are
time-varying, unstable and frail. Although it is difficult
to emulate this behavior completely, this phenomenon can
be modeled for optimizing problems in computational re-
search. Metaphysically, each social swarm consists of many
groups in which each individual is close to each other such
as a family, a company and even a country. When there
are benefits such as food and good opportunities, the close
relationship will force one to share this information with
one’s neighborhoods or companions without considering in-
ternal competition. In addition, one’s neighborhoods will
not query the information and follow it for achieving the

goal. However, when the whole group approaches the same
common goal, the creditability among individuals will de-
cline rapidly. This phenomenon has well been manifested
in the world financial speculation market. There also exists
a very strong basis in the field of micro-economics in the
form of game theory and coalition theory. Based on this hy-
pothesis, we propose that each particle of PSO will not only
follow its own local best solution, but will also follow other
superior particles’ local best solutions with creditability at
the same time. Iteratively, with the creditability declining,
the individual will apt to track multiple local best solutions
until it is very close the global best solution. In this paper,
we present a new type of topologies to emulate this process
that extends the basic meaning of standard PSO.

3.2 Algorithm Details

Traditional PSO updates particles’ velocities according
to evaluations among particles in the whole dimension.
However, in practice, some problems show different prop-
erties in each dimension. A particle that has high fitness
value in some dimensions may have low fitness value due
to inferior solutions in other dimensions [7]. Because of
that, references [6-7] proposed new strategies to improve
the convergence of PSO in different dimensions. In this
paper, first, we evaluate other local best solutions in each
dimension and find the superior solutions in that dimension
for one particle. Then, the velocity of a particle in one di-
mension is followed by all other superior solutions. The
updating equation is expressed as

vi,j(t + 1) = wvi,j(t) + c1
∑

m∈Ψ

rmcm
r (t)[pm,j − xi,j(t)]

+ c2rg[g̃j − xi,j(t)]

(4)

where, Ψ is represented as the set where the particles’ lo-
cal best solutions in the jth dimension are equal or smaller
than the ith particle’s for minimization problem, i.e. Ψ =
{m|f̃pm

≤ fpi
,m = 1, 2, ..., N}, f̃pm

represents the fitness
value when the jth element of the ith local best solution is
substituted by the jth element of the mth local best solu-
tion; g̃j means the jth component of the best solution in the
jth dimension for the ith local best solution; the parameters
c1, c2 and w have the same meaning with equation (1); N
is denoted as the population size of the swarm; rg and rm

(m = 1, 2, ..., N) are also independent random numbers
uniformly distributed in the range [0, 1]; the credit coeffi-
cient cm

r (t) is given by

cm
r (t) =

{ (
1 − f̃pm−g̃j

f1
p−g̃j

)(
nmax−t

nmax

)
(f1

p − g̃j �= 0)

0 (f1
p − g̃j = 0)

(5)

where f1
p is called generalized average fitness of the lo-

cal best solutions for the particles in set Ψ , i.e. f1
p =

1
N

∑
m∈Ψ

f̃pm
; likewise, nmax is the maximum number of it-

eration. In fact, the key learning strategy GPSO adopts is
that each particle tracks multiple local optima in each di-
mension instead of the whole search space. GPSO can be
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treated as an extension of the standard PSO by tracking mul-
tiple local optima according to the observed social behav-
iors described in the beginning of this section. Also, from
the viewpoint of dimension learning, GPSO can be seen as
an extension of CLPSO [7] and CPSO [6]. The pseudocode
of GPSO is given in Fig. 1.

Figure 1. The pseudocode of GPSO

4 Numerical Experiments on Benchmarks

4.1 Testing Functions

We chose the following testing functions including a uni-
modal function, two multimodal functions and a composite
functions [6, 7, 9] as the benchmark functions because of
their popularity and representative.
1. Rosenbrock’s function (RF, unimodal):

f1(x) =
d−1∑
i=1

(
100(x2

i − xi+1)2 + (xi − 1)2
)

(6)

(Domain: 2.048, Threshold: 100)
2. Ackley’s function (AF, multimodal):

f2(x) = −20 exp

(
−0.2

√
1
d

d∑
i=1

x2
i

)

− exp
(

1
d

d∑
i=1

cos(2πxi)
)

+ 20 + e

(7)

(Domain: 30, Threshold: 5)
3. Griewanks’s function (GF, multimodal):

f3(x) =
d∑

i=1

x2
i

4000
−

d∏
i=1

cos
(

xi√
i

)
+ 1 (8)

(Domain: 600, Threshold: 0.1)
4. Composition function 4(CF4 in reference [9]):
f4 (CF4) is constructed by ten different benchmark func-
tions that consist of two rotated Ackley’s functions, two
rotated Rastrigin’s functions, two rotated Weierstrass func-
tions, two rotated Griewank’s functions, and two sphere
functions.
(Domain: 5, Threshold: 500)
where, the thresholds are used to test the stability of PSOs.
Aiming for a rigorous evaluation on their capability of han-
dling different problems, unimodal and multimodal func-
tions are tested on thirty dimensions and composite func-
tions are tested on ten dimensions, respectively. The global
fitness values are all zeros for all the testing functions.

4.2 Parameters’ Configuration of PSOs

In this paper, GPSOs are compared with the standard
PSO and several improved PSOs including CLPSO [7],
CPSO-H [6], FI-PSO [5], UPSO [4] and FDR-PSO [3] un-
der the above benchmarks. In order to create a fair testing
platform, the same basic parameters of PSOs were set. For
instances, the population size N was set at 20; both the ac-
celeration coefficients c1 and c2 were set to 1.49. The iner-
tia weight w is in the range [0.4, 0.9] and declines linearly
in iteration as described in equation (2). The maximum
iterations were set at 1 × 104 for solving 30-dimensional
unimodal and multimodal problems and 1 × 103 for solv-
ing 10-dimensional composite functions, respectively. With
the above mentioned parameter settings, all the simulations
were run for 20 times continuously and independently. The
mean values of convergence results, corresponding stability
results are listed in Table I (Note that Con. is an abbrevia-
tion of convergence, and Sta. is an abbreviation of stability
in the tables). The definition of stability means that the run
is successful if it reaches the predefined threshold.

4.3 Comparative Results with Other
PSOs

Rosenbrock’s function (f1) is often treated as a multi-
modal problem. It is very difficult to locate the minimum
due to a narrow ridge from the local optima to the global
optimum. Encouragingly, GPSO delivers the best perfor-
mance in convergence. PSO shows the worst stability result.
Ackley’s function (f2) is a multimodal function with many
local minima positioned on a regular grid [6]. As shown
in Table I, GPSO exhibits the best performance in conver-
gence, and CLPSO, CPSO-H, FIPSO and FDR-PSO deliver
similar results. PSO only obtains 60% success of rate over
all the run times. Griewanks’s function (f3) has undesirable
properties as the dimensionality of the function is increased
such that the basin of attraction containing the global opti-
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Table 1. Results of multimodal functions
Function F1 F2

Con. Sta. Con. Sta.

GPSO 5.21e-002 20 7.11e-015 20

CLPSO 1.83e+001 20 1.10e-014 20

CPSO-H 1.99e-001 20 4.65e-014 20

FIPSO 2.21e+001 20 1.76e-014 20

UPSO 8.82e+00 20 1.16e+000 20

FDR-PSO 3.51e-001 20 5.06e-014 20

PSO 1.93e+002 14 5.87e+000 12

Function F3 F4

Con. Sta. Con. Sta.

GPSO 0 20 3.36e+002 20

CLPSO 0 20 3.48e+002 20

CPSO-H 1.02e-002 20 5.35e+002 9

FIPSO 1.21e-006 20 3.50e+002 20

UPSO 6.50e-003 20 3.50e+002 19

FDR-PSO 1.69e-002 20 4.59e+002 11

PSO 2.26e+001 16 5.83e+002 8

mum appears to encompass a larger percentage of the total
space as the search space grow. GPSO and CLPSO are able
to find the theoretical optimum over the run times. Other
modified PSOs deliver the similar results in convergence.
Composition function 4 (f4) called a hybrid composition
function is composed by ten different benchmark functions
[9]. GPSO also performs well in this composition function,
while PSO and CPSO-H deliver the worst convergence and
stability results. FDR-PSO also shows unstable property for
this composition problem. In summary, GPSO consistently
performs better than other PSOs, and It exhibits capability
of solving multimodal problems based on our experiments.

5 Conclusion

In this paper, a generalized particle swarm optimizer is
presented based on the relationships in social behavior. By
analyzing some real-world phenomena assigned to evolu-
tionary particles, the updating velocity equations can be
treated as generalized models to extend the topology of the
original PSO and some existing modified PSOs. Compar-
ative studies confirm that the proposed GPSO is able to
deliver marked improvements over the state-of-the-art PSO
methods. Apart from the same parameters as the standard
PSO, GPSO does not require any other parameter settings,
which is another attractive characteristic for evolutionary

algorithm. Thus, GPSO is a powerful tool to solve multi-
modal functions optimization. Despite the encouraging re-
sults delivered by the proposed GPSO, we need to do fur-
ther investigation by developing a more efficient coopera-
tive scheme utilizing multiple local optima to improve the
performance of GPSO in different classes of problems.
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